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Abstract

We present a method for the reconstruction of a 3D real
object from a sequence of high-definition images. We com-
bine two different procedures: a shape from silhouette tech-
nique which provides a coarse 3D initial model followed
by a multi-stereo carving technique. We propose a fast but
accurate method for the estimation of the carving depth at
each vertex of the 3D mesh. The quality of the final textured
3D reconstruction models allows us to validate the method.

1. Introduction

As computer graphics and robot vision become more and
more performing, attention is being focussed on complex
high quality 3D models and the way they can be acquired
from real objects. There exist a lot of different 3D object re-
construction methods but they can be classified into two dif-
ferent groups: active methods and passive methods. Laser
range scanners and encoded light projecting systems use ac-
tive triangulation to acquire precise 3D data. However they
remain expensive and require special skill for the acquisi-
tion process itself. Furthermore only few scanners are ca-
pable of recording concurrently the 3D shape information
with the color texture. Compared to active scanners, pas-
sive methods work in an ordinary environment with simple
devices. The target object is pictured by a digital RGB cam-
era from different view points, for example as it rotates on
a turntable. The 3D information is then extracted from the
sequence of 2D color images by using different techniques.
To do so, we need the image sequence to be calibrated, and
even if this is an open subject, we will not develop it in the
paper and we will assume that all the images have been cali-
brated [8]. Our reconstruction approach consists of two dif-
ferent and complementary methods: a shape from silhouette
[7, 1, 2, 10] and a multi-stereo method [13, 14]. The former
constructs an initial 3D model by volume intersection from

multiple views as described in section 2. The coarse 3D
model obtained is then used as the initialization of a multi-
stereo reconstruction method described in section 3.

2. Shape from silhouette

Let ��� be the ���	� image silhouette, 
�� the corresponding
camera projection matrix and � a 3D point. We can define
the cone �� generated by the silhouette ��� as the set of lines� ��� which verifies
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The visual hull # defined by the silhouette set �$� (see Fig.
1) can be written as:
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Silhouettes enable us to define an implicit function in each

Figure 1. Visual hull construction by cone in-
tersection.

3D point. Different approaches for the construction of the
visual hull have been developed [11, 12]. We have chosen to
use an octree-based technique to construct it [15], the zero-
level octree being the object bounding box. This bounding
box is deduced from silhouette bounding boxes. The final
visual hull resolution is only function of the octree depth
level. For each new level, the resolution is multiplied by
4. Once the octree has been built, we get a 3D mesh of the



visual hull by marching cube triangulation. We can see in
Fig. 2 the visual hull obtained for a statuette with an octree
depth of 8. The resulting 3D mesh contains 97223 vertices
and 194442 triangles.

3. Multi-stereo carving

Since the visual hull is an upper-bound on the surface,
we propose to carve it by a multi-stereo technique which
will deform the initial model in order to adjust it to the true
surface. To do so, we will use information contained in the
object texture. Evidently, if the object has no texture or if
its information is too weak, the method will fail. In this
case, there exist alternative solutions such as paint projec-
tion (which is not acceptable for many objects) or structured
light projection to create the information.

The multi-stereo carving procedure can be decomposed
into 4 different steps:

- carving candidate detection,

- carving direction selection,

- carving depth estimation,

- carving depth filtering.

We describe these 4 different steps in the following sub-
sections.

3.1. Carving candidate detection

To detect candidates for carving among the vertices of
the visual hull mesh, we have to evaluate the depth quality
of the surface at each one of its vertices. This quality mea-
sure is based on colour coherence of the projection of a ver-
tex into the different images. To measure image coherence,
we need to find a way to extract vectors of information from
original data (i.e. the images). This is discussed in section
3.1.2. We need also to define a multi-vector likeness crite-
rion as follows.

3.1.1 Multi-vector cross-correlation criterion

Let ./ � �0� �1�324�6575658�09�! be 9 different vectors. We would
like to measure their likeness. If 9:�%; , a very well known
criterion is the normalized cross-correlation. We can define
the normalized vector .9�� as

.9 � � ./ ��<=.> �?�? ./ ��<=.> � ?�? �@�A�B�C2C�657565)�@9�!3�
with .> � being the vector whose components are the mean
value of the ./ � components. Cross-correlation between two

vectors .> � and .>ED is just defined as the scalar product of
the normalized vectors .9�� , .9 D :
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If 9JIK; , a possible measure of likeness is the mean cross-
correlation between all the possible vector pairs:
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If .X is the total mean sum vector,
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and .X � is the partial mean sum vector,
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and
L � can be written as a function of .X :
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The major problem with this criterion is that it does not al-
low eliminating vectors which are very different from oth-
ers. This can happen for example when there is a highlight
in one of the correlation windows. A possible solution can
be found if we write

L � as the mean correlation between
each vector .9�� and its partial mean sum vector .X � :
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We can compute the likeness between every vector and the
partial mean sum vector:
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Figure 2. Visual hull of a statuette. Some samples of the 72 silhouettes are shown at the bottom.

and only use those vectors .9 � which verify
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If yYM	zBP is the number of vectors that verify the preceding
equation, we can write a second criterion

L ^ :
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3.1.2 Evaluation methods

Having chosen a multi-vector criterion, we need to define
the way information is extracted from images. Different
authors have used various approaches but they always use
the same basic idea: if a 3D point belongs to the object
surface, its projection into the different cameras which re-
ally see it (i.e. there is no occlusion) will be closely cor-
related. A first method consists of projecting the 3D point
into the image of each camera, sampling the image color
at each point of projection and measuring the consistency
of all color samples[3]. But this measure is very sensitive
to noise, since we only have one sample per image. To in-
crease robustness, it is preferable to take several samples
per image. A way of doing this is to fit a quadric surface to
the model [5], and to use the surface-induced mapping be-
tween cameras to compute coherence. This procedure has
been successfully tested. But thanks to the high resolution
of our 3D model, we can assume the surface to be locally

flat. This improves speed as the mapping induced by a plane
between two cameras is a homography.

We show in Fig. 3 the result of using the
L ^ criterion in

a plane-based correlation. We can see the relation between
the regions with a weak correlation (black and blue colour)
and the concave regions, in particular in the area close to
the ears and the nose.

3.2. Carving direction selection

For every carving candidate we need to define the di-
rection in which to carve. This direction is chosen as the
optical ray passing through the optical center of one of the
cameras and the 3D point. Ideally, the best camera would
have its image plane as perpendicular to the object normal
as possible, but unfortunately, at this stage we know neither
the right shape of the object nor its normal. As a first try,
we could use the visual hull model as an object estimation
and consider the visual hull normal as the object normal.
If the visual hull is close to the true shape, estimation will
be good enough. Otherwise, the visual hull normal may be
completely wrong (Fig. 4). A more efficient solution con-
sists of taking the median camera among the set of cameras
which actually see the candidate. This method does not de-
pend on the normal estimation and thus is more stable. In
some cases, such as in Fig. 4, the method may not work as
the above set of cameras can be void at the bottom of some
folds. This is an intrinsic problem of the visual hull.



Figure 3. Plane-based correlation results

Figure 4. Back side of the visual hull (detail).
Left: The surface is very folded with strong
normal variations. Right: The corresponding
high resolution mesh.

3.3. Carving depth estimation

For every point, we have to estimate the depth along
the carving direction to attain the object surface. Un-
like the carving candidate detection method, which was an
evaluation method, the depth estimation cannot benefit of
a mapping-induced surface. For the correlation method
we have chosen the easiest solution: a rectangular win-
dow based correlation, also called front parallel correlation.
Even if it does not exist any surface whose projection is al-
ways a rectangular window, the method is still robust since
it does not assume any a prioristic assumption about the sur-
face of the object. In addition, it is quicker to calculate. The
algorithm used for evaluation of a depth along the carving
direction is similar to that of [13]. For every 3D depth, the
algorithm computes the projected 2D point for every image,
extracts the centered window by resampling the image, and

measures coherence of the resulting windows. One question
that arises is the way depth sampling has to be done. For
a given carving direction, its projection into the different
images are also lines1and they are all related by the epipo-
lar constraint. It is easy to establish the geometric relation-
ship between a 2D deviation along a projected line � ^0� and
the corresponding 3D depth ��� � . This relationship depends
only on the 3 parameters �������� as follows:

�3� � M	� ^0� PA� �]GQ� ^����<�KG7� ^0� �
� ^0� M��C� � P�� ��G6�3� ��V�JKG6� � � 5

Using these two equations, we can deduce the relationship
between two different 2D deviations � �^�� and � D ^0� :

�3� � M	�
D
^0� PA�

� D G6� D ^0�� D <� D G6� D ^��
�

and

� �^0� M��C� � P�� � � GQ� � ����c�V���G7�3� � �
we can substitute
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D
^�� P0P�� � |"p ���dp � � ���� |�� � � �c� � p � � �����U� � | p � � p � � ���� � |��8p � � ���  |�� ��¡ |�� p � � ��� �
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This relation is exact whereas in [13] the approximation� �^�� �¤z¥�
D
^0� is used. With these equations we can re-

late in a single coordinate system all the correlation curves
1In a pinhole camera model context.



generated by a set of cameras. For a given image, we only
need to calculate the depth steps which correspond to a lo-
cal image variation of one pixel. This means that for a given
depth interval, cameras near to the median camera need to
compute a low number of correlations and cameras far from
the median camera need a higher number. Logically, the
bigger the parallax is, the higher the depth resolution. This
property has led us to split the carving procedure into two
different and complementary stages as follows:
- a first stage with a reduced number of cameras near

the median camera for a quick rough initial search in
all the depth interval,

- a second stage with the full set of cameras within a
smaller interval for a high-accuracy search.

3.3.1 Initial search

For the initial search, we use only the 4 nearest cameras to
the median one. The maximum depth to carve is directly
given by the visual hull because we know that points must
stay inside the visual hull volume. Using cameras with a
small parallax allows us to scan a big depth range with a
small number of correlations. For a given depth range and
for every camera, we compute the correlation with the me-
dian camera, which gives us 4 correlation curves. By using
the equations from the preceding section, we can represent
all the 4 curves in the same coordinate system. Ideally, all
the curves should have an absolute maximum at the depth
of the object surface (Fig. 5.a). Unfortunately, it is not
always like that (Fig. 5.b), for example when there is a
highlight present or when not enough texture information is
available (we correlate only image noise). The method used
to estimate the initial depth is basically a voting approach.
We search the depths corresponding to the local and global
maxima for each curve whose global maximum is bigger
than a threshold and we give to each depth a weight. If the
maximum cumulated weight exceeds a threshold, the cor-
responding depth is validated as initial estimation and we
proceed to the next stage. Otherwise, the estimation is re-
jected and the point remains uncarved.

3.3.2 Accurate estimation

Once the initial carving depth estimation has been obtained,
we can use all the available cameras to improve the preci-
sion. We choose a little interval around the initial estimation
and compute all the possible correlations with the median
camera (Fig. 6.a). The curves whose maximum does not
attain a threshold are rejected and the remaining ones are
transferred to a single coordinate system for the computa-
tion of the mean curve (Fig. 6.b). The maximum of the
mean curve gives us the final position of the point. The re-
sults of the multi-correlation carving are shown in Fig. 7.
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Figure 5. Initial search with the 4 closest cam-
eras to the main camera. a) Valid case. b)
Non-valid case.
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Figure 6. Carving depth accurate estimation.
a) Set of valid correlation curves. b) Mean of
correlation curves.

Regarding the depths map in Fig. 7.c, it can be highlited that
there are points whose carving depth is negative (in blue).
This has been due to a poor segmentation of the silhouettes
which has caused a slight erosion at some regions of the vi-
sual hull. The multi-correlation technique has enabled us to
precisely recover these regions.

3.4. Carving depth filtering

Let consider the 3D mesh resulting from the deformation
of the visual hull mesh after carving. As the carving depth
estimation is a local estimation, the results are noisy, which
leads us to a new stage of depth regularisation. For a given
point � of this mesh, we project every neighbour onto the
carving direction, which gives us a depth for each of them
according this direction (Fig. 9). Each depth is given a
weight equal to its correlation value. The final position of �
is chosen as the weighted median value.

A mean filter can also be applied to reduce irregulari-
ties due to the noise and the residual imprecision of the
method. The results of both filters are presented in Fig.
8. Finally a texture mapping is applied with the method
described in [15] (Fig. 10). The total CPU time required



a)

b)

c)

Figure 7. (a) Carved model. (b) Multi-correlation results. (c) Carving depths.



Figure 8. Carved model with filtering.

Figure 9. Depth regularisation.

for the full 3D model reconstruction (visual hull construc-
tion+carving+texture mapping) is around 10 minutes in a
PC with a Pentium 4 processor at 1,4GHz.

4 Conclusions

We propose a 3D reconstruction method of real objects
from a sequence of images. After the construction of the vi-
sual hull defined by the object silhouettes, we carve it with a
multi-correlation technique. This method works well if the
shape of the visual hull is not very different from the object,
even if the carving depth is big (ex. the face of the statue).
If the mesh deformation is very important (ex. the back
appendix in the model) the results are noisy because there
are many points that cannot be carved. We are consider-
ing a more global method as the level set approach [6, 4, 9]
which we would like to combine with the present technique
in order to control its computational cost.
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