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Abstract

In this paper we present a new approach to high quality 3D
object reconstruction by using well known computer vision
techniques. Starting from a calibrated sequence of color im-
ages, we are able to recover both the 3D geometry and the
texture of the real object. The core of the method is based on
a classical deformable model, which defines the framework
where texture and silhouette information are used as exter-
nal energies to recover the 3D geometry. A new formulation
of the silhouette constraint is derived, and a multi-resolution
gradient vector flow diffusion approach is proposed for the
stereo-based energy term.

1 Introduction

Acquiring 3D real objects is not an easy task and abun-
dant literature exists on this subject. There are three main
approaches to this problem: pure image-based rendering
techniques, hybrid image-based techniques,and 3D scan-
ning techniques. Pure image-based rendering techniques as
[2, 21] try to generate synthetic views from a given set of
original images. They do not estimate the real 3D structure
behind the images, they only interpolate the given set of im-
ages to generate a synthetic view. Hybrid methods as [5, 20]
make a rough estimation of the 3D geometry and mix it with
a traditional image-based rendering algorithm in order to ob-
tain more accurate results. In both types of methods, the goal
is to generate coherent views of the real scene, not to obtain
metric measures of it. In opposition to these techniques, the
third class of algorithms try to recover the full 3D structure.
Among the 3D scanning techniques, we can distinguish two
main groups: active methods and passive methods. Active
methods use a controlled source of light such as a laser or a
coded light in order to recover the 3D information [26, 4, 15].
Passive methods use only the information contained in the
images of the scene [30]. They can be classified according to
the type of information they use. A first class consists of the
shape from silhouette methods [1, 24, 32, 23, 19, 31]. They
obtain an initial estimation of the 3D model known as visual
hull. They are robust and fast, but because of the type of
information used, they are limited to simple shaped objects.
We can find commercial products based on this technique.
Another approach includes the shape from shading methods.
They are based on the diffusing properties of Lambertian sur-

faces. They mainly work for 2.5D surfaces and are very de-
pendent on the light conditions. A third class of methods
use the color information of the scene. The color informa-
tion can be used in different ways, depending on the type of
scene we try to reconstruct. A first way is to measure color
consistency to carve a voxel volume [28, 18]. But they only
provide an output model composed of a set of voxels which
makes difficult to obtain a good 3D mesh representation. Be-
sides, color consistency algorithms compare absolute color
values, which makes them sensitive to light condition varia-
tions. A different way of exploiting color is to compare local
variations of the texture such as in cross-correlation methods
[11, 25]. As a specialization of the color-based group, there
are particular methods that try to use at the same time another
type of information such as silhouettes or albedo. Although
very good results are obtained, the quality is still limited, and
the main problem is the way the fusion of different data is
done. Some, such as [18, 3] use a volume grid for the fusion.
Others like [16] do the fusion in the image domain. Finally,
a deformation model framework can be used as in [9]. The
algorithm we present in this paper can be classified in the last
group. We perform the fusion of both silhouettes and texture
information by a deformation model evolution. The main
difference with the methods mentioned above is the way the
fusion is accomplished, which allows us to obtain very high
quality reconstructions.

2 Algorithm Overview

The goal of the system is to be able to reconstruct a 3D ob-
ject only from a sequence of calibrated images. To do so, we
dispose of several types of information contained in the im-
ages. Among all the information available, silhouettes and
texture are the most useful for shape retrieval. The next step
is to decide how to mix these two types of information to
work together. As we will see, this is not an easy task, be-
cause those types of information are very different, almost
orthogonal.

2.1 Classical Snake vs. Level-Set Methods

A well-known framework used to optimize a surface under
several kinds of information is the model deformation frame-
work. Two different related techniques can be used depend-
ing on the way the problem is posed: a classical snake ap-



proach [10] or a level-set approach [29]. The main advan-
tage of the snake approach is its simplicity of implementa-
tion and parameter tuning. Its main drawback is the constant
topology constraint. Level-set based algorithms have the ad-
vantage of an intrinsic capability to overcome this problem
but its main disadvantages are the computation time and the
difficulty in controlling the topology. In general, the only
control over the topology of a level-set is the regularization
term, which makes it difficult to separate the smoothness of
the final surface from the topology constraint. In the present
work we have chosen the classical snake as the framework
for the fusion of the silhouette and stereo data. This implies
that the topology has to be completely recovered before the
snake evolution occurs as we discuss in Section 3. Since the
proposed way to recover the right topology is the visual hull
concept, the topology recovery will depend on the intrinsic
limitations of the visual hull. This implies that there exist
objects for which we are unable to recover the correct topol-
ogy (no silhouettes seeing a hole) that could be correctly re-
constructed using a level-set method (the correct topology
is recovered with the stereo information). We think that, in
practice, the visual hull provides the correct topology in all
but pathological cases, so this is not a severe handicap.

2.2 The Classical Snake Approach

The deformable model framework allows us to define an op-
timal surface which minimizes a global energy E . In our
case, the minimization problem is posed as follows: find the
surface S of R

3 that minimizes the energy E (S) defined as
follows:

E (S) = Etex(S)+Esil(S)+Eint(S), (1)

where Etex is the energy term related to the texture of the
object, Esil the term related to the silhouettes and Eint is a
regularization term of the surface model. Minimizing Eq. 1
means finding Sopt such that:

∇E (Sopt)=∇E tex(Sopt)+∇E sil(Sopt)+∇E int(Sopt)= 0,
= Ftex(Sopt) + Fsil(Sopt) + Fint(Sopt) = 0,

(2)
where the gradient vectors Ftex, Fsil and Fint represent the
forces which drive the snake. Equation 2 establishes the
equilibrium condition for the optimal solution, where the
three forces cancel each other out. A solution to Eq. 2 can
be found by introducing a time variable t for the surface S
and solving the following differential equation:

St = Ftex(S)+Fsil(S)+Fint(S). (3)

The discrete version becomes:

Sk+1 = Sk +∆t(Ftex(S
k)+Fsil(S

k)+Fint(S
k)). (4)

Once we have defined the energies that will drive the pro-
cess, we need to make a choice for the representation of the
surface S. This representation defines the way the deforma-
tion of the snake is done at each iteration. We have chosen

the triangular mesh representation, because of its simplicity
and well known properties.

To completely define the deformation framework, we need
an initial value of S, i.e., an initial surface S0 that will evolve
under the different energies until convergence.

In this paper, we describe the snake initialization in Sec-
tion 3, the force driven by the texture of the object in Section
4, the force driven by the silhouettes in Section 5, how we
control the mesh evolution in Section 6. We finally discuss
our results in Section 7.

3 Snake Initialization

The first step in our minimization problem is to find an initial
surface close enough to the optimal surface in order to guar-
antee a good convergence of the algorithm. Close has to be
considered in a geometrical and topological sense. The geo-
metric distance between the initial and optimal surfaces has
to be reduced in order to limit the number of iterations in the
surface mesh evolution process and thereby the computation
time. The topology of the initial surface is also very impor-
tant since classical deformable models maintain the topology
of the mesh during its evolution. An efficient initialization,
which lies between the convex hull of the object and its real
surface is the visual hull [13]. The visual hull can be de-
fined as the intersection of all the possible cones containing
the object and can represent surfaces with an arbitrary num-
ber of holes. However, this does not imply that it is able to
completely recover the topology of the object and, what is
even worse, the topology of the visual hull depends on the
discretization of the views (see Fig. 1).

Computing the visual hull from a sequence of images is a
very well known problem of computer vision and computer
graphics [24, 23, 20]. Different approaches exist, depending
on the type of output, way of representation and fidelity to
the theoretical visual hull. In our case, we are interested in
methods producing good quality meshes (Eulerian, smooth,
high aspect ratio), even if the fidelity is not very high. Be-
sides the good quality mesh, another primary requirement is
to obtain the right topology. Volume carving methods are a
good choice because of the high quality output meshes that
we can obtain through a marching cube [17] or marching
tetrahedron algorithm. The degree of precision is fixed by
the resolution of the volume grid, which can be adapted ac-
cording to the required output resolution. But this adapt-
ability can also generate additional problems of topology:
if the resolution of the grid is low compared to the size of
the visual hull structures, the aliasing produced by the sub-
sampling may produce topological artifacts that the theoretic
visual hull does not have. To sum up, three different sources
of deviation may arise between the real object topology and
the computed visual hull topology:

• Errors due to the nature of the visual hull (see Fig. 1
left). Real objects may have holes that cannot be seen
as a silhouette hole from any point of view. The visual



Figure 1: Different topological problems. Left: example of a topology that cannot be captured by the visual hull concept.
Middle: example of topological problem arising with a finite number of cameras. The first camera is able to recover the right
topology whereas the second camera is not. Right: bad topology caused by the resolution of the visual hull construction
algorithm. We show in gray the original silhouette and in black the reconstructed visual hull.

hull will then fail to represent the correct topology for
this kind of object.

• Errors due to the use of a finite number of views (see
Fig. 1 middle). They can be solved by having the ade-
quate points of view that allow a recovery of topology
of the real object.

• Errors due to the implementation algorithm (see Fig.
1 right). They are caused by the numerical precision or
the subsampling of the silhouettes. They can be avoided
by increasing the precision of the algorithm or by filter-
ing the silhouettes.

In practice, we use an octree-based carving method fol-
lowed by a marching tetrahedron meshing algorithm and a
mesh simplification. In order to initialize the octree, an ini-
tial bounding box can be analytically computed from the 2D
silhouette bounding boxes. The 3D back projection of n 2D
bounding boxes defines a 3D convex hull formed by 4n half
planes. The bounding box of the convex hull can be analyt-
ically computed by a simplex optimization method for each
of the 6 variables defining the bounding box.

4 Texture Driven Force

In this section we define the texture force Ftex appearing in
Eq. 2 which contributes to recovering the 3D object geome-
try during the snake evolution process. We want this force to
maximize the image coherence of all the cameras that see the
same part of the object. Different approaches exist to mea-
sure the coherence of a set of images, but they can be clas-
sified into two main groups whether they make a punctual
radiometric comparison (e.g. photo-consistency measures as
in voxel coloring [28]) or a spatial comparison of relative ra-
diometric distribution (e.g. cross-correlation measures). We
have chosen the normalized cross-correlation because of its
simplicity and robustness in the presence of highlights and
changes of the lighting conditions.

Once we have a coherence criterion, we can now recover
the 3D geometry by maximizing the criterion for a given

set of views. Two different types of approaches for this
optimization have been proposed in the literature. In the
first type the texture similarity is used to evaluate a current
model. If the measure is improved by deforming the model
locally, then the model is updated and the process iterated as
in [9, 8]. In other approaches such as level-set based meth-
ods in [11, 25], a volumic band is explored around the cur-
rent model. In this first type of approaches the exploration
remains locally dependent on the current model. Since the
exploration does not test all the possible configurations, the
algorithm can fail because of local maxima of the texture co-
herence criterion. The second type of approaches consists of
testing all the possible configurations. This allows making
a more robust decision. In order to improve even more the
robustness, we can cumulate the criterion values into a 3D
grid by using a voting approach as in [19, 22]. We will use
this kind of approach since it is very robust in the presence
of highlights and it allows us to pass from the image infor-
mation to a more usable information of the sort “probability
of finding a surface”.

4.1 Proposed Voting Approach

Let us consider our problem of 3D recovery from texture.
We want to optimize, for a given pixel in one image, the tex-
ture coherence with the other images. An optic ray can be
defined by the pixel, and we search the 3D point P belong-
ing to the optic ray that maximizes the normalized cross-
correlation with the other images. This can be done in an
efficient way by sampling the projection of the optic ray in
every image. In practice, the knowledge of the visual hull,
which is an upper-bound of the object, allows us to acceler-
ate computations. The implemented correlation algorithm is
the same as in [6].

The problem with this algorithm is the computation time.
For large images (2000 x 3000), the computation time can
reach 16 hours on a fast machine. This time can be strongly
reduced with almost no loss because of the redundancy of the
computation. To be able to benefit from already computed
correlations, the image can be partitioned into different reso-



Figure 2: Example of an image partition into 3 different res-
olution layers.

lution layers as shown in Fig. 2. Then the original algorithm
is first run on the lowest resolution layer (black pixels in Fig.
2), with the depth interval defined by the visual hull. For
consecutive layers, the depth interval is computed using the
results of the precedent layer. To estimate the depth interval
of a pixel based on the results of the previous layer, a record
of the correlation values is maintained in order to control the
reliability of the estimation. The theoretical maximum im-
provement that we can reach with this method in the case of
3 layers as illustrated in Fig. 2 is 16 times faster than the
greedy method. In practice, the improvement is around 5 or
6 times faster for well-textured images. The worst case cor-
responds to non textured images where correlations become
unreliable. The depth interval estimation fails, necessitating
to compute correlations over the full visual hull depth inter-
val.

Finally, an efficient octree structure is used to store the
resulting correlation hits. The result of the correlation step
will be a 3D octree containing the cumulated hits of all the
pixel estimations. This volume by itself cannot be used as
a force to drive the snake. A possible force could be the
gradient of the correlation volume. The problem is that this
is a very local force defined only in the vicinity of the object
surface. The proposed solution to this problem is to use a
gradient vector flow (GVF) field to drive the snake.

4.2 Octree-based Gradient Vector Flow

The GVF field was introduced by [33] as a way to overcome
a difficult problem of traditional external forces: the capture
range of the force. This problem is caused by the local defi-
nition of the force, and the absence of an information prop-
agation mechanism. To eliminate this drawback, and for all
the forces derived from the gradient of a scalar field, they
proposed to generate a vector field force that propagates the
gradient information. The GVF of a field f is defined as the
vector field v that minimizes the following energy functional
E :

E =
∫

µ||∇v||2 + ||v−∇ f ||2||∇ f ||2,

where µ is the weight of the regularization term. The so-
lution to this minimization problem has to satisfy the Euler
equation:

µ∇2v− (v−∇ f )||∇ f ||2 = 0.

A numerical solution can be found by introducing a time
variable t and solving the following differential equation:

vt = µ∇2v− (v−∇ f )||∇ f ||2.

The GVF can be seen as the original gradient smoothed by
the action of a Laplacian operator. This smoothing action
allows us at the same time to eliminate strong variations of
the gradient vector field and to produce a propagation of the
gradient. The degree of smoothing/propagation is controlled
by µ . If µ is zero, the GVF will be the original gradient,
if µ is very large, the GVF will be a constant field whose
components are the mean of the gradient components.

Since our data have been stored in an octree structure, the
GVF has to be computed on a multi-resolution grid. For this,
we need to be able to:

• define the Laplacian operator and the gradient operator
in the octree grid;

• define how to interpolate between voxels with different
sizes.

In three dimensions, the gradient and Laplacian operators
are defined as:

∇ f = [ fx, fy, fz], ∇2 f = fxx + fyy + fzz.

In the case of a regular grid with a spacing of [∆x,∆y,∆z],
both quantities can be approached by central finite differ-
ences:

fx ≈ f (x+∆x,y,z)− f (x−∆x,y,z)
2∆x ,

fxx ≈ f (x+∆x,y,z)−2 f (x,y,z)+ f (x−∆x,y,z)
∆x2 .

If the grid is not regular, then the finite differences will not
be centered. An easy way to find the equivalent formulas for
a non-regular grid is to estimate the parabolic curve ax2 +
bx+c that passes through 3 points (Fig. 3), and compute the
derivatives of the estimated curve. After solving the equation
system, we find:

fx ≈ 1
(δ+∆)

(

f (x+∆)− f (x)
∆/δ − f (x−δ )− f (x)

δ/∆

)

= b,

fxx ≈ 2
(δ+∆)

(

f (x+∆)− f (x)
∆ + f (x−δ )− f (x)

δ

)

= 2a.

As far as the interpolation is concerned, in order to sim-
plify the computation, we have to add a constraint to the
topology of the multi-resolution grid: the difference of res-
olution in the neighborhood of a voxel, including the voxel
itself, cannot be greater than one level. This is not a strong
constraint since the resolution of the octree needs to change
slowly if we want good numerical results in the computation
of the GVF.

There exist three different scenarios in a multi-resolution
numerical algorithm. The first one is when the current voxel
and all its neighbors have the same size (see Fig. 4.a). In this
case, computations are done as with a mono-resolution grid.
The second one is when the current voxel is bigger than or
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Figure 4: Value interpolations (2D example).

equal to its neighbors (see Fig. 4.b). For those voxels with
the same size, computations are carried out in a normal way.
For those which are smaller, a mean value is simply used to
get the correct value in the scale of the current voxel:

fx(A) ≈ f (EFGH)− f (D)

2δ
, fy(A) ≈ f (B)− f (C)

2δ
.

The third case corresponds to the current voxel being smaller
than or equal to its neighbors (see Fig. 4.c and d). We can see
two types of configuration, and in both we want to compute
the gradient at the point A. In 4.c we need the value of the
function f at the points E, F , BC and BD:

fx(A) ≈ 1
(δ+1.5δ )

(

f (CD)− f (A)
1.5 − f (F)− f (A)

1/1.5

)

,

fy(A) ≈ 1
(δ+1.5δ )

(

f (BC)− f (A)
1.5 − f (E)− f (A)

1/1.5

)

.

In the example 4.d the values BCD and DEF are obtained
by interpolating B with CD, and DE with F , respectively. If
we translate these examples into 3D, we have an additional
interpolation along the new dimension for the points BC and
CD in 4.c, and BCD and DEF in 4.d.

In Fig. 5 we compare the result of a 3D GVF computation
for µ = 0.1 using a regular grid and the octree approach. The
scalar field f used in the example is defined as

f (x,y,z) =

{

1 for z ∈ [34,36]
0 else

.

We can appreciate the accuracy of the multi-grid computa-
tion compared to the mono-grid one. We can hardly see any
difference between both curves, only when the octree reso-
lution becomes very low (voxels 20 and 50). Mean values of
computation speed up for 10 levels of resolution are between
2 and 3 times faster than the mono-grid version while storage
space is reduced between 10 and 15 times.

5 Silhouette Driven Force

The silhouette force is defined as a force that makes the snake
verify the original silhouettes of the sequence. If it is the
only force of the snake, the model should converge towards
the visual hull. Since we are only interested in respecting
silhouettes, the force will depend on the self occlusion of the
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snake. If there is a part of the snake that already verifies a
particular silhouette, the rest of the snake is not concerned by
that silhouette, since the silhouette is already matched. If we
compare a visual hull and the real object, we see that the en-
tire real object verifies the silhouettes, but not all the points
of the object. The object concavities do not obey any silhou-
ette because they are occluded by a part of the object that
already matches the silhouettes. The main problem is how to
distinguish between points that have to obey the silhouettes
and those that have not. This is equivalent to finding the ap-
parent contours of the object. The silhouette force can be
in fact decomposed into two different components: a com-
ponent that measures the silhouette fitting, and a component
that measures how strongly the silhouette force should be
applied. The first component is defined as a distance to the
visual hull. For a 3D vertex PM on the mesh of the snake this
component can be implemented by computing the smallest
signed distance dV H between the silhouette contours and the
projection of the point into the corresponding silhouette:

dV H(PM) = min
i

d(Si,PiPM).

A positive distance means that the projection is inside the sil-
houette, and a negative distance that the projection is outside
the silhouette. Using only this force would make the snake
converge towards the visual hull.

The second component measures the occlusion degree of
a point of the snake for a given view point. The view point
is chosen as the camera that defines the distance to the visual



hull:

α(PM) =

{

1 for dV H(PM) ≤ 0
1

(1+d(Scsnake,PcPM))n for dV H(PM) > 0 ,

c(PM) = argmini d(Si,PiPM).

In the definition of α , there are two cases. If dV H is nega-
tive, it means that the point is outside the visual hull. In that
case, the force is always the maximum force. For a point
inside the visual hull, c is the camera that actually defines
its distance to the visual hull. Scsnake is the silhouette cre-
ated by the projection of the snake into the camera c. The
power n controls the decreasing ratio of α . This function
gives the maximum silhouette force to the points that com-
pose the apparent contours. The rest of the points, which are
considered as concavities, are weighted inversely to the dis-
tance to the silhouette. This allows the points of the snake
to detach themselves from the visual hull. A big value of
n allows an easier detachment. But on the other hand, the
force is too local and does not allow smooth transitions be-
tween concavities and contours. The value used in practice
is n = 2, which is a compromise between smoothness and
concavity recovery.

The final silhouette force for a given point of the snake is
a vector directed along the normal to the snake surface NM
and its magnitude is the product of both components:

Fsil(PM) = α(PM)dV H(PM)NM(PM)

6 Mesh Control

Having defined the texture and silhouette forces Ftex and
Fsil , i.e. the external forces, the last force to detail is the
internal force Fint . The goal of the internal force is to regu-
larize the effect of the external forces. Classic internal forces
usually use two different types of regularization: a Laplacian
regularization term that controls the tension of the model
and a biharmonic regularization term that controls its rigid-
ity. The discrete versions of the Laplacian operator ∆̃ and
the biharmonic operator ∆̃2 on a triangle mesh can be easily
implemented using the umbrella operator, i.e., the operator
that tries to move a given point v of the mesh to the center of
gravity of its 1-ring neighborhood:

∆̃v =

(

1
m

m

∑
i=1

vi −v

)

, ∆̃2v = ∆̃(∆̃v) =

(

1
m

m

∑
i=1

∆̃vi − ∆̃v

)

,

where vi is the ith neighbor of v. The total internal force is
defined as a linear combination of the Laplacian operator and
the biharmonic operator:

Fint(v) = ρ∆̃v+(1−ρ)(−∆̃2v),

where ρ is the desired ratio between tension and rigidity.

Figure 6: External forces used in the reconstruction of the
BigHead model. Top left: rendering of the stereo correla-
tion octree volume. Top right: the octree partition used in
the computation of the gradient vector flow field. Bottom
left: norm of the gradient vector flow field. Bottom right: α
component of the silhouette force after convergence.

Since the texture forces Ftex can sometimes be parallel
to the surface of the snake, in the snake evolution we use
as texture force its projection F N

tex over the normal of the
surface:

F
N
tex(v) = (Ftex(v) ·N(v))N(v).

This avoids problems of coherence in the force of neighbor
points and helps the internal force to keep a well-shaped sur-
face. The snake evolution process (Eq. 4) at the kth iteration
can then be written as the evolution of all the points of the
mesh vi:

vk+1
i = vk

i +∆t(F N
tex(v

k
i )+βFsil(v

k
i )+ γFint(v

k
i )), (5)

where ∆t is the time step and β and γ are the weights of
the silhouette force and the regularization term relative to
the texture force. Equation 5 is iterated until steady-state
of all the points of the mesh is achieved. The time step ∆t
has to be chosen as a compromise between the stability of
the process and the convergence time. An additional step
of remeshing is done at the end of each iteration in order
to maintain a minimum and a maximum distance between
neighbor points of the mesh. This is achieved by controlled
decimation and refinement of the mesh. The decimation is
based on the edge collapse operator and the refinement is
based on the

√
3-subdivision algorithm [12].



Figure 7: Oceania and BigHead models after convergence
(45843 and 114496 vertices respectively). Left: Gouraud
shading. Right: Same views with texture mapping.

7 Results

In this section we present a few results obtained with the pro-
posed approach, and with a texture mapping method similar
to the one used in [27, 14]. But we have further improved
the quality of the texture by filtering the highlights. This is
possible thanks to the availability of several images seeing a
given triangle.

All the reconstructions presented in this paper where ob-
tained from a single axis rotation sequence of 36 images,
each image having 2008x3040 pixels. The values of β and γ
are the same for all the reconstructions: β = 0.2, γ = 0.15.
Because the snake iteration is always done in the voxel coor-
dinate system of the GVF octree, the value of β only depends
on the ratio between the images size and the octree size. Typ-
ical values of γ are between 0.1 and 0.25, depending on the
required smoothness. In both the BigHead sequence and the
Oceania sequence the internal force was only composed of
the Laplacian term. Since in both cases the stereo correla-
tion worked very well, the stereo force is strong enough to
compensate the internal smoothing. However, if the stereo
correlation is weak as in the head of the Inca model (see Fig.
9), the biharmonic term helps to fit the stereo data, improving
the final quality of the model.

Figure 8: Mesh detail of the Oceania and BigHead models.

Computation times are dominated by the correlation vot-
ing step: a typical computation time for 36 images of 6
Mpixels is of 3 hours on a P4 1.4GHz machine.

In Fig. 6 we illustrate the different forces used in the de-
formable model. In Fig. 6 top left we show a rendering of the
correlation voting volume. We can observe that the support
has only correlated near the tick marks, which provide tex-
ture details for the correlation algorithm. Ten octree levels
are used in the voting approach (top right), which allows a
high precision in the gradient vector flow computation (bot-
tom left). At the end of the iterative process, a steady-state
for the entire mesh is achieved, and concavities are automat-
ically detected (bottom right). We can see that, since there
is no stereo-based force for the support, it is entirely recon-
structed by the silhouette force (in fact, since the initial snake
is already the visual hull, the support has not changed). An-
other example is shown in Fig. 7 and Fig. 8. We can appre-
ciate in Fig. 8 the high quality of the reconstructed models.
Other results are shown in [7], in particular a comparison
between the proposed method and a 3D scanner laser.

8 Conclusion and future work

We have presented a new approach to 3D object reconstruc-
tion based on the fusion of texture and silhouette informa-
tion. Our two main contributions are the definition and the
fusion of the silhouette force into the snake framework, and



Figure 9: Comparison of the biharmonic term influence on
the Inca model (48419 vertices). Left: the internal force is
composed only by the Laplacian term (ρ = 1). Right: we use
both the Laplacian term and the biharmonic term (ρ = 0.3).

the full system approach where different known techniques
are used and improved in order to obtain high quality results.

The two main limitations of the algorithm are also its two
main sources of robustness: the volume voting approach and
the topology constant snake approach. The voting approach
allows good reconstructions in the presence of highlights, but
it also limits the maximum resolution of the 3D model. A
way to overcome this limitation could be to introduce the fi-
nal model into another snake evolution where the texture en-
ergy computation would take into account the current surface
(tangent plane or quadric based cross-correlation). Since the
initial model is already very close to the real surface, only
some iterations would suffice to converge. The second draw-
back is the topology constant evolution. It allows a guaran-
teed topology of the final model but it is also a limitation for
some kind of objects where the topology cannot be captured
by the visual hull concept. A possible solution would be to
detect self collisions of the snake, and to launch a local level-
set based method in order to recover the correct topology.
Further work includes: i) the self calibration of the image se-
quence using both the silhouettes and traditional methods, ii)
an improved strategy for the converge of the snake in order to
accelerate the evolution in the empty concavitity regions, iii)
the possible use of the surface curvatures to allow a multi-
resolution evolution of the mesh, iv) a more advanced work
in the generation and visualization of the texture mapping.
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